Performance Analysis of Multilevel Parallel Applications on Shared Memory
Architectures

Gabriele Jost', Haogiang Jin
NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 USA
{gjost,hjin}€nas.nasa.gov

Jesus Labarta, Judit Gimenez, Jordi Caubet
European Center of Parallelism of Barcelona-Technical University of Catalonia (CEPBA-UPC)
cr. Jordi Girona 1-3, Modul D6,08034 — Barcelona, Spain
{jesus,judit,jordics } @cepba.upc.es

Abstract

In this paper we describe how to apply powerful performance analysis techniques to under-
stand the behavior of multilevel parallel applications. We use the Paraver/OMPltrace
performance analysis system for our study. This system consists of two major components: The
OMPItrace dynamic instrumentation mechanism, which allows the tracing of processes and
threads and the Paraver graphical user interface for inspection and analyses of the generated
traces. We describe how to use the system to conduct a detailed comparative study of a bench-
mark code implemented in five different programming paradigms applicable for shared memory

1 Introduction

With the advent of parallel hardware and software technologies users are often faced with the
challenge to choose a programming paradigm that is best suited for the underlying computer ar-
chitecture. With the current trend in parallel computer architectures towards clusters of shared
memory symmetric multi-processors parallel programming techniques have evolved that support
parallelism beyond a single level. Multiple levels of parallelism can be achieved by the use of
processes, multithreading, and a mixture of both. Which programming paradigm is the best will
depend on the nature of the given problem, the hardware architecture, and the available software.
When comparing the performance of applications based on different programming paradigms it is
important to understand how the performance is influenced by what aspect of the paradigm. It is
important to identify and quantify the performance metrics of a certain paradigm.

Quantification of performance characteristics can be only be achieved by a detailed analysis.
The Paraver [14] visualization and analysis tool was developed with the goal to provide the user
with means to obtain a qualitative global perception of the application behavior as well as a de-
tailed quantitative analysis of program performance. Paraver allows the user to visually inspect
trace files that have been collected during program execution. Traces are composed of state tran-
sitions, events, and communications, each with an associated time stamp. These three elements
allow generating traces that capture the behavior of a programs execution. For our study we used
the OMPTtrace module, which is optionally available with the Paraver distribution. The OM-
Pltrace module allows dynamic instrumentation and tracing of applications with multiple levels

of parallelism.

*The author is an employee of Computer Sciences Corporation



To this day there a very few published results containing detailed performance analysis data
for multilevel parallel program. In our study we compare different implementation of one of the
NAS Parallel Benchmarks [1] employing single and multiple levels of parallelism. We demon-
strate how to conduct a detailed performance analysis to determine the impact of the
programming paradigm on the scalability of the code.

The rest of the paper is structured as follows: In Section 2 we give a brief discussion of parallel
programming paradigms applicable to shared memory architectures and identify their perform-
ance metrics. In Section 3 we explain how the Paraver/OMPItrace performance analysis system
supports the different levels of parallelism. In Section 4 we perform a comparative case study us-
ing different implementations of a CFD benchmark kernel. In Section 5 we briefly discuss related
work and summarize our conclusions in Section 6.

2 Parallel Programming Paradigms for Shared Memory Architectures

Most shared memory architectures provide hardware support for a cache coherent globally
shared address space. Process communication is usually supported by software but leverages the
hardware support for the shared address space. This provides support for various programming

paradigms.

2.1 Process Level Parallelism

In our study we assume that each process has its own local memory. A well understood pro-
gramming paradigm for process level parallelism is message passing. The computational work
and the associated data are distributed among a number of processes. If a process needs to access
data located in the memory of another process, it has to be communicated via the exchange of
messages. MPI  (Message Passing Interface) [10] is a widely accepted standard for writing
message-passing programs.

The Shared Memory Access (SMA) programming paradigm is also based on the concept of
processes with their own local memory, but it separates the communication and synchronization
step. In this programming model, a special memory area is allocated which is accessible to all
processes. Exchange of data is achieved by writing to and reading from the shared memory
buffer. Data transfer between two processes is performed by only one side and does not require a
matching operation by the other process. The correct ordering of memory access has to be im-
posed by the user through explicit synchronization. The MLP library [18], which was developed
at the NASA Ames Research Center, supports this programming paradigm by providing routines
for process generation, shared memory allocation, and process synchronization.

2.2 Thread Level Parallelism

Parallel programming on a shared memory machine can take advantage of the globally shared
address space. Compilers for shared memory architectures usually support multi-threaded execu-
tion of a program. Loop level parallelism can be exploited by using compiler directives such as
those defined in the OpenMP standard [13]. OpenMP provides a fork-and-join execution model
in which a program begins execution as a single process or thread. This thread executes sequen-
tially until a parallelization directive for a parallel region is found. At this time, the thread creates
a team of threads and becomes the master thread of the new team. All threads execute the state-
ments execute the statements until the end of the parallel region. Work-sharing directives are



provided to divide the execution of the enclosed code region among the threads. All threads need
to synchronize at the end of parallel constructs, they also may synchronize at the end of each
work-sharing construct or at specific points enclosed by the parallel construct. Data transfer be-
tween threads is done by direct memory references. In a nest of loops, parallelization directives
can be applied to several of the loop levels. This allows for the possibility to have groups of
threads working on different chunks of data. In our study we consider nested OpenMP parallel-
ism as mulitlevel parallelism, since grouping the threads imposes a hierarchy amongst them.
Even though the nesting of parallelization directives is permitted by the OpenMP standard, 1t 1s at
this point not supported by many compilers. The NanosCompiler [3] has been developed to show
the feasibility of exploiting nested parallelism in OpenMP and is used in our study.

2.3 Hybrid Parallelism

Process level parallelism and thread level parallelism can be combined into a hybrid paradigm
to exploit parallelism beyond a single Jevel. The main thrust of the hybrid parallel paradigm is to
combine process level coarse grain parallelism, which is obtained for example in domain decom-
position and fine grain parallelism on a loop level which is achieved by compiler directives. The
hybrid MPL/OpenMP approaches has been used in various applications ([8], [9]).

The SMA programming model also allows a combination of processes and threads. We refer
to the hybrid SMA/OpenMP programming paradigm as MLP (Multi-Level-Parallelism). MLP
has been successfully applied at the NASA Ames Research Center [18],

3 Support for Performance Analysis of Multilevel Parallel Programs

A trace-based visualization and analysis environment consist of two basic components: the
tracing package and the visualization tool. The power of the system depends on the individual
capabilities of each component as well as on the proper interoperation between them. The tracing
tool must be able to capture events that accurately characterize the behavior of the program. The
analysis tool has to post-process the trace information in order to display useful views and statis-

tics.

3.1 The OMPItrace Module

In our study we used OMPItrace [12] to instrument all the programming paradigms targeted by
our analysis. The basic OMPItrace mechanism traces OpenMP, MPI and hybrid MPI/OpenMP
binaries without requiring source code modification or linking to special libraries.

The SGI version of OMPItrace uses DITools [16] as the dynamic instrumentation mechanism.
Calls to the dynamically linked OpenMP and MPI run-time libraries are intercepted by properly
modifying the Global Offset Table (GOT) at load time. Events are emitted into the trace on entry
and exit of MPI calls along with the information of message size and source/destination. Entry
and exit of OpenMP parallel regions and work-sharing constructs are also tagged. In this pro-
gramming model, the code regions that correspond to the body of the parallel regions/loops are
outlined by the compiler and encapsulated as parallel routines. OMPltrace intercepts entry and
exit to these routines as well as the run time calls that assign work when called by these outlined
routines. Besides tracing events, OMPlItrace can read two hardware counters and emit their val-
ues to the trace. Reading the hardware counters poses a certain overhead, as it requires a system
call. If hardware counters are not read, the overhead of the instrumentation at one probe is about



1 microsecond. Reading the hardware counters increases the overhead by about 20-23 microsec-
onds.

The Paraver object model is structured in a three level hierarchy: Application, Task, and
Thread. Each record is tagged with these three identifiers. This approach allows Paraver to sup-
port nested parallel programming models

For this study, OMPItrace had to be extended to support process generation and synchroniza-
tion mechanisms different form those originally used for MPI and OpenMP. To support SMA
and MLP it was necessary to add extensions to dynamically intercept calls to the UNIX fork rou-
tine. We also added support for the state records that indicate MLP synchronization primitives
and provided an instrumented version of the MLP library to allow tracing.

3.2 Trace File Views

The traces collected during the execution of a program contain a wealth of information, which
as a whole is overwhelming. We need to be able to screen out information to gain visibility of a
critical subset of the data. In order to understand the impact of various aspects of hardware, oper-
ating system (OS), and program structure on the performance, it is also necessary to correlate
extracted subsets of information with each other. This can be done through timeline graphical
displays or by histograms and statistics. Paraver provides great the flexibility in designing dis-
plays hat are suitable for a particular problem. The timelines can be displayed at the level of
‘ndividual threads but also at the level of processes. In he latter case, the values for each thread
are combined to produce a value for the process. A user can specify through the Paraver GUI
how to compute a given performance index from the records in the trace and then save it as a
configuration file. These configuration files can then be used by to immediately pop up a view of
the selected performance index. For example, it is possible to show when MPI calls are made,
when parallel functions are being executed by each thread or what the MIPS or cache miss rates

are for a given time.

THRERD

THRERD
THREAD
THRERD
THREARD
THREAD

THREAD 1,2.3

3352256,53 us 3486338,54 us 3620420,55 us 3754502,56 us

3845678
LT =

212174,52 us

w . [ Comm [T Recv [ Send [T Flag it Color

Fiure 1: Timeline of Parallel Functions



Figure 1 shows the parallel functions view of an MLP. The different colors indicate the paral-
lel regions with light blue representing time that is spent outside of parallel regions.

Another interesting view shows whether a thread is doing useful computation or not. To obtain
such a view we mask time in process synchronization primitives, communication routines, time
in OpenMP idle loops, barriers between successive OpenMP work sharing constructs and finally
the synchronization waits implemented by the programmer through busy wait loops and the
FLUSH directive. Once identified time intervals where really useful computation is done, views
showing MIPS or duration of those regions can be derived.

The main quantitative analysis module in Paraver builds a table where for each thread profile
data or histograms are shown. Typical statistics such as average value, maximum or standard de-
viation can be applied to a user-selected region of any of the timeline views previously defined.
The result is a very powerful profiling capability. Example statistics that can be reported are time
or miss ratio for each thread within each user function or parallel routine but also histogram of
duration of a given MPI call or even correlation between cache misses and duration of a given
MPI call. In Figure 2 we show the mapping of the number of graduated instructions for each
thread within different paralle] functions.

e

= Bl e R e B B
ISR IS ICS SN el el Nl W
Slwlmool-lbatwlo]l =

Total]

Average

Maximum

Minimum

Stdev

i?igure ZivAna‘lySls of Pérailel Functions and Graduated Instructioné




4 A Comparative Case Study

We used the BT benchmark from the NAS Parallel Benchmarks (NPB) [1] for our comparative
study. The BT benchmark solves three systems of equations resulting from an approximate fac-
torization that decouples the x, y and z dimensions of the 3-dimensional Navier-Stokes equations.
These systems are block tridiagonal consisting of 5x5 blocks. Each spatial dimension is alterna-

tively swept as depicted in Figure 3.
We evaluated three parallelization approaches employing a total five programming models.
We used two pure process level parallel, two hybrid parallel, and one nested OpenMP implemen-

tation of the same benchmark.

Figure 3: Structure of the BT
benchmark

4.1 Description of the Different Benchmark Implementations

The MPI implementation of the BT employs a multi-partition scheme [2] in 3-D to achieve
good load balance and coarse-grained communication. In this scheme, processors are mapped
onto sub-blocks of points of the grid in a special way such that the sub-blocks are evenly distrib-
uted along any direction of solution. The blocks are distributed such that for each sweep direction
the processes can start working in parallel. Throughout the sweep in one direction, each processor
starts working on its sub-block and sends partial solutions to the next processor before going into
the next stage. An example for one sweep direction of a 2-D case is illustrated in Figure 4. Com-
munications occur at the sync points as indicated by gray lines in Figure 4. We indicate the
number of the process who owns the data within each square. In the actual implementation sepa-
rate routines are used to form the lefi-hand side of the block tridiagonal systems before these
systems are solved. A number of five- and six-dimensional work arrays are used to hold interme-

diate results.



o sweep
direction

Figure 4: The multi-partition scheme in 2-D.

In the SMA implementation we employ the same algorithm, except that communications are
handled by data exchange through the shared memory buffers and proper synchronization primi-
tives.

The OpenMP implementation is based on the version described in [5]. The implementation is
similar to that of the message-passing version, but the large working arrays are significantly re-
duced in size and a couple of the computational intensive loops are fused. The code that we used
in our study contains nested OpenMP directives, which were automatically generated using the
CAPO [6] parallelization tool. It also contains OpenMP extensions for nested parallelism sup-
ported by the NanosCompiler [3] In our study we used the NanosCompiler for the nested
OpenMP since nested OpenMP parallelism was not supported by the commercial SGI compiler.
The automatic generation of nested OpenMP directives using CAPO is described in [7].

The hybrid MPI/OpenMP and MLP implementations are also based on the versions described
in [5], however, the memory requirements are somewhat higher than in the pure OpenMP code,
since we have to provide the workspace for a one dimensional data distribution. The coarse-
grained parallelization was achieved by using the CAPTools [4] parallelization tool to generate a
message-passing version with a one-dimensional domain decomposition in the z-dimension. For
the MLP implementation communications are handled by usage of the shared memory buffer.
The OpenMP directives we inserted by using CAPO on the y-dimension. Since the data is dis-
tributed in the z-dimension, the call to z_solve requires communication within a parallel
region as depicted in Figure 5. The routine y_solve contains data dependences on the y-
dimension, but can be parallelized by pipelined thread execution.

In summary, we use three different parallel algorithms for the BT benchmark. SMA and MPI
use the same algorithm, but different means of data transfer. MLP and MPVOMP use the same
algorithm, but different means of data transfer. The nested OpenMP implementation uses a third

algorithm.



rallel

{fr A
W

[T ]

- h
e

x

[T
&

Ly LY

- 1

_J e
call receive
do k=k_low,k_high

do i=1,nx
rhs(iljlk)=
. rhs(i,j,k-1)
enddo
enddo
call send
enddo

Figure 5: Code fragment of hy-

brid routine z-solve

4.2 Performance Indices
We will use the following abbreviations for the various programming models under considera-

tion:

MPI: Process level parallelism employing message passing based on MPI [10].

SMA: Process level parallelism employing shared memory buffers for data transfer.
OpenMP: Thread level parallelism based on OpenMP [13]

MLP: Hybrid process and thread level parallelism employing SMA and OpenMP.
MPI/OMP: Hybrid process and thread level parallelism employing MPI and OpenMP.

In order to compare and quantify the performance differences, we consider the following metrics,
not all of which are applicable to all programming models. By useful instructions we mean in-
structions not spent on thread management, process synchronization, and communication.

MEM: Number of L2 cache misses while executing useful instructions reported in mil-
lions.

INST: Number of useful instructions reported in billions.

COMM: Percentage of time spent in MPI routines for point-to-point or global communi-
cation

SYNC: Percentage of time spent in process synchronization. This includes the time in
MPI barriers and wait operations and time spent in MLP synchronization routines.
THREADM: Percentage of time spend in thread management, i.e. thread fork and join,
OpenMP thread synchronization, user introduced synchronization for pipelined thread
execution, thread idle time.



These simple metrics will not give a detailed explanation of a particular performance problem.
They will, however, give hints on where further analysis is required. Quantifying and comparing
these characteristics require detailed measurements of system influence and hardware counters.

4.3 Comparing the Performance of Different Paradigms

We ran the various implementations of BT on an SGI Origin 3000. We used the SGI compiler
for all implementations. For the nested OpenMP code we used the NanosCompiler [3], which 1s
based on the SGI compiler, but supports nested OpenMP parallelism. All our timings where run
in batch mode with the appropriate number of CPUs. In Figure 6 we show the execution times for
various combinations of processes and threads for our hybrid implementations and for different
choices of thread groupings in the nested OpenMP implementation. For the hybrid codes we in-
dicate the nesting level as NPxNT, where NP is the number of processes and NT is the number of
threads. For the nested OpenMP code we indicate the nesting level as NGxNT, where NG is the
number of groups of threads and NT is the number of threads within one group.
The speedup from 1 to 144 CPUs for all imple-
BT Class A on 100 CPUs mentations is shown in Figure 7. For hybrid codes
and the nested OpenMP code we report the best
times over various nesting levels. We calculate the
speedup by the ratio of the execution time on N
CPUs and the fastest time achieved on 1 CPU. The
fastest single CPU run was achieved with the
OpenMP code. Therefore we report a speedup of
the MPI implementation on 1 CPU as 0.5, indicat-
ing that the MPI code takes twice as long as the
OpenMP code on 1 CPU. For the multilevel paral-

Figure 6: Timings for different nesting lel implementations we tested various nesting
levels. levels and report the speedup for the best configu-

ration. As can be seen, the scalability of the

different implementations varies widely. The process level parallel implementations outperform
the hybrid and OpenMP implementations. To understand why this is the case, we will conduct a
detailed performance analysis using Paraver and OMPItrace.

MLP MPI/OpenMP  Nested OpenMP

Programming Paradigm




| —
BT Class A Speedup
140 - ==
120 4 o e e S
100 3 -7 - - coTT - o T T - . MPI
g 5l | |—=—SMA
3 I
9 —&— MLP
& B0 P —— MPI/OpenMP
; b —3¥— Nested OpenMP
404 - P =" P
204 ——-
!
0 1= ——————— ;
1 4 16 49 64 81 100 121 144 i
Number of CPUs

Figure 7: Speedup for different paradigms

For our analysis we obtained traces for all implementations. The SGI Origin allows tracing two
hardware counters at a time. We traced graduated instructions and L2 cache misses. We collected
the traces without and with hardware counters Tracing without hardware counters has minimal
probe perturbation and should report detailed patterns of the temporal behavior of the application.
Tracing with hardware counters introduces a bit more of overhead but provides extra detailed in-
formation. Based on the traces we can display relevant performance views and based on them we
can compute some statistics. Statistics that do not depend on the hardware counters are computed
on the trace without counters to reduce possible instrumentation overheads. We used the analysis
module to calculate and average useful instruction and L2 miss rate.

We chose a run with 100 CPUs and the class A problem size for our investigations In Table 1
we summarize the statistics for the different benchmark implementations. The values were ob-
tained by applying the analysis module. We applied the Paraver analysis module to the state
view in order to determine the statistics COMM, SYNC, and THREADM. The main performance
impact comes from time spent outside of useful calculations.

MPI SMA MLP MPI/OMP | OMP
COMM 14% N/A N/A 7% N/A
MEM 45M 0.56M 3.78M 5.12M 1.01 M
INST 1.2B 1.39B 1.55B 1.38B 1.27 B
SYNC 25% 12% 5.5% 70% N/A
THREADM | N/A N/A 65% 21% 56%

Table 1: Performance metrics for a 100 CPU run

As a first step, we want to determine why the SMA code scales better than the MPI code, in
spite of the fact that the same algorithm is being used. As can be seen from Table 1 SMA spends

10



Jess amount of time in communication and synchronization compared to MPL In Table 2 we re-
port the average duration per call for the four main time consuming routines. The timings
correspond to the combination with the best performance, employing 25 processes and 4 threads

each.

x_solve | y_solve | z_solve | ths

MPI 13.844 | 13.189 | 13.877 | 19.240

SMA | 10315 |10.663 | 11.086 | 7.705

Table 2: User function timings (in ms) inclusive MPI and MLP calls

A view of the trace that exposes relevant information regarding the actual computations in the
application shows the user function being executed but taking out all the time inside MPI calls.

These timings are reported in Table 3.

x_solve | y_solve | z_solve rhs

MPI 9.715 10.098 | 10.723 | 4.343

SMA | 9.808 10.123 | 11.003 | 7.024

Table 3: User function timings (in ms) exclusive MPI and MLP calls

Routine rhs is communication bound as can be inferred from the important difference in dura-
tion of user mode duration. The routine performs the exchange of boundary data before each
sweep. Each process performs a series of MPI_Isend and MPI_TIrecv followed by an
MPT_Waitall. In Figure Figure we show the timelines of MPI calls for a 100 process run. A
striking effect is that the long time in MPI is not just in the MPI_waitall. The view of the MPI
routines exposes some very long calls to MPI_Isend and MPI_TIrecv. They correspond to
marked dense areas in Figure 8. This shows that even if one may think that the use of non-
blocking MPI routines decouples communication and synchronization it does not seem to be to-
tally true. The duration of a given call seems to depend on whether the matching call has been
posted. In case of many communication requests there is the possibility of contentions in the in-
ternals of the MPI library. The result is that a process posting several consecutive calls may be
delayed in one of them, thus delaying the posting of successive calls. The effect propagates
through the process dependence chain of the application in very intricate ways.

BT sswe=swss| The SMA implementation does not suf-
| fer from this effect. Data transfer takes
place within the use code itself, by read-
ing from and writing to the shared
memory buffer. This increases the com-
putation time somewhat, but yields in
bi = general better scalability.

N NS Now we can go on to address the
Figure‘ 8: MPI calls in BT MPI 0n&00 Proc- question of what limits the scalability of
esses the multilevel parallel codes. In order to
answer this question, we apply the view
of useful computations described in Sec-

tion 3. Based on this view it is possible to obtain the percentage of time spent in useful instruc-

L3

11



Bt 40 6444 (Fp 444 59 44 a4 5 4 $OAHE 64+ 4 4D 4 404 14 FRIL 44 3 304

POt e se o er oo s everes
]
]

QBes 44+ ¢ 0 ~p
|

Foroeroree e srsree

Dbt
N

Figure 9: Flow of Useful Computations in BT MLP.

tions within each user routine. As an example we will demonstrate a detailed analysis of the MLP
code and then summarize our findings for the other multilevel implementations.

For BT MLP we computed that only 12% of the time within routine rhs is spent in useful
computations. For routine x_solve it is 46%, for y_solve it is 31% and for z_solve itis
14%. In Figure 9 we show the view of useful computations for an MLP run on 10 processes with
10 threads each. This is not the combination that scales best, but it is best suited to point out the
performance issues. Dark blue represents time spent in useful instructions and light blue indicates
none useful time.

The initial part in Figure 9 represents parallel regions inside routine rhs. A detailed analysis
of the time behavior shows that parallel computations tend to get blocked for periods of time that
happen to be in the order of 10ms or multiples of that. A close look at the view of instructions
executed by the threads in those intervals exposes the fact that a very low number of instructions
has been executed by at least one thread. We interpret this as the thread having been preempted.
Until it regains a CPU, other threads get blocked at the barriers between OpenMP work sharing
constructs. These barriers are required by the OpenMP standard and not necessary for the cor-
rectness of the program’s execution.

The denser regions of useful computations correspond to the single parallel region in
x_solve. This is the second marked area in Figure 9. Its behavior in terms of duration is fairly
imbalanced and can be attributed to effects like data placement and memory access time.

Routine v_solve has two major parallel regions; the second one containing pipelined thread
execution within one MLP process. The thread pipeline within each process contributes to the

12



overall poor percentage of useful computation in this routine. Routine y_solve corresponds to
the third marked area in Figure 9.

The last marked area corresponds to the useful computations of routine z_solve. It con-
tains a parallel region where every OpenMP thread uses MLP signal and wait routines to
synchronize with other threads, possibly in other processes. This creates a pipeline from the first
to the last process. A very detailed time analysis shows a second pipeline with opposite direction,
resulting in a V-shaped pattern of useful computation. All of these dependencies between threads
contribute to the very low percentage of useful computation in this routine.

Even though the MPI/OMP implementation employs the same algorithm it does not show the
problem of CPU preemption in routine rhs that we identified in its MLP counterpart. The inter-
action of OpenMP and MPI causes less OS side effects than MLP. However, in this case it is the
MPI library that causes major problems. The MPI calls within the parallel region of routine
z_solve have an extremely low MPIS value. This low value can be explained by the process
being preempted. We have also observed massive migration of threads during the whole run of
the MPI/OMP code. This results in the poor scalability of the MPIVOMP code. For the MLP code
we observed thread migration only during the initial phase of program execution.

We conclude that the fine grain parallelism introduced in the hybrid parallelization leads to in-
teractions between OS activities, such as system interrupts, and the program synchronization
operations. The impact of these interactions on performance increases rapidly with the number of
processors. The blocking of processes maybe be caused by OS interrupts or context switches, but
may also be done by the OpenMP or MPI library in order to support single and multi-user mode
on the system. The behavior is very much dependent on the. implementation of the run time li-
braries for parallel execution.

The OpenMP implementation has the best performance for a single CPU run and has the low-
est memory requirements. The implementation does not use pipelined thread execution but rather
places the directives on the first dimension in some of the loops. The outer loop of the Class A
BT benchmark has 62 iterations. Clearly, single OpenMP parallelization will not scale beyond 62
threads. Nesting of OpenMP directives allows distributing the work in two dimensions thereby
providing work for more threads. A view of the useful computations of the nested OpenMP code
for 100 CPUs is shown in Figure 10. The view corresponds to best performing nesting level em-
ploying 25 groups of 4 threads. For this combination we calculated an average of 44% of time
spent in useful computations per iteration. All other combinations yielded a lower percentage of
useful time. The non-useful time is mostly spent in idle time, not so much in synchronization and
fork/join operations. The NanosCompiler provides its own thread library, which handles thread
synchronization and scheduling very efficiently. The thread idle time can probably be reduced by
optimizing the distribution of the loop iterations onto the threads. The NanosCompiler provides
clauses to allow detailed mappings of the iteration space onto threads, but in our study we have
only used a simple block distribution.

13



Figure 10: Useful computations for BT OpenMP.

5 Related work

There are many published reports on the comparison of different programming paradigms. We
can only name a few of the. In [19] Taft discusses the performance of a large CFD application.
He compares the scalability of message passing versus MLP. A comparison of message passing
versus shared memory access is given in[15] and [17]. The study uses the SGI SHMEM library
for RMA programming. A discussion of nested OpenMP parallelization is given in [7]. Our cur-
rent work differs from these reports in that we are exploiting powerful performance analysis tools
to obtain detailed information about program behavior.
There are a number of commercial and research performance analysis tools that have been devel-
oped over the years. An example for a commercial product is Vampir [21], which allows tracing
and analysis of OpenMP, MPI, and hybrid MPL/OpenMP applications. TAU (Tuning and Analy-
sis Utilities) [20] was developed at the University of Oregon. It is a freely available set of tools
for analyzing the performance of the C,C++, Fortran and Java programs. To our knowledge nei-
ther of these tools supports the MLP programming paradigm.

6 Conclusions

We have used the Paraver/OMPItrace performance analysis system to conduct a detailed per-
formance analysis of five different implementations of the BT NAS Parallel benchmark
employing different programming. We have demonstrated how the performance analysis tool was
used to calculate performance statistics expose patterns in the traces, which help to identify per-
formance problems.

14



A first conclusion of our study is that implementation issues in the run time library and their
interaction with the OS are very relevant to the total application performance. The hybrid imple-
mentations of our benchmark where particularly affected by the interaction of the run time
libraries for process and thread parallelization.

We also observed several issues that are related to the programming model itself rather than
the underlying run time library. The strength of the purely process based model lies in the fact
that the user has complete control over process synchronization and data distribution. When em-
ploying OpenMP this it not the case anymore.

The scalability of our hybrid codes suffered from this fact that process level communication
was delayed until the barrier synchronization points. Nested OpenMP parallelism requires the
nesting of parallel regions, which introduces many barrier synchronization points into the outer
region. This raises the question whether the OpenMP standard should be extended to allow
nested parallel loops without extra parallel regions. Such an extension would also make nested
parallelism more efficient.

The second issue concerns workload distribution. The well-balanced distribution of work,
which yields the good scalability for the SMA implementation, is not supported by OpenMP di-
rectives. It is possible to mimic the process level parallelization, by assigning specific loop
bounds to each thread manually. However, this would defeat the advantage of OpenMP which 1s
the ease of the programming paradigm. We are currently working with the NanosCompiler group
to identify suitable OpenMP extensions.

Acknowledgments

This work was supported by NASA contracts NAS 2-14303 and DTTS59-99-D-
00437/A61812D with Computer Sciences Corporation/AMTI, by the Spanish Ministry of Sci-
ence and Technology, by the European Union FEDER program under contract TIC2001-0995-
C02-01, and by the European Center for Parallelism of Barcelona (CEPBA).

References

[1] D. Bailey, J. Barton, T. Lasinski, and H. Simon (Eds.), “The NAS Parallel Benchmarks,” NAS
Technical Report RNR-91-002, NASA Ames Research Center, Moffett Field, CA, 1991.

[2] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, “The NAS
Parallel Benchmarks 2.0,” NAS Technical Report NAS-95-020, NASA Ames Research Cen-
ter, Moffett Field, CA, 1995. http://www.nas.nasa.gov/Software/NPB.

[3] M. Gonzalez, E. Ayguade, X. Martorell and J. Labarta, N. Navarro and J. Oliver. “Nano-
sCompiler: Supporting Flexible Multilevel Parallelism in OpenMP”, Concurrency: Practice
and Experience. Special issue on OpenMP. vol. 12, no. 12. pp. 1205-1218. October 2000.

[4] C.S. lerotheou, S.P. Johnson, M. Cross, and P. Leggett, “Computer Aided Parallelisation
Tools (CAPTools) — Conceptual Overview and Performance on the Parallelisation of Struc-
tured Mesh Codes,” Parallel Computing, 22 (1996) 163-195. http://captools.gre.ac.uk/

15



[5] H. Jin, M. Frumkin, and J. Yan, “The OpenMP Implementations of NAS Paralle] Bench-
marks and Its Performance”, NAS Technical Report NAS-99-011, 1999.

[6] H.Jin, M. Frumkin and J. Yan. “Automatic Generation of OpenMP Directives and Its Appli-
cation to Computational Fluid Dynamics Codes,” 1in Proceedings of Third International
Symposium on High Performance Computing (ISHPC2000), Tokyo, Japan, October 16-18,
2000.

[7]1 H.Jin, G.Jost, J. Yan, E. Ayguade, M. Gonzalez, X. Martorell, “Automatic Multilevel Paral-
lelization Using OpenMP”, 3™ European Workshop on OpenMP, Barcelona, Spain, Sep.

2001.

[8] R.D. Loft, S. J. Thomas, J.M. Dennis, “Terascale Spectral Element Dynamical Core for At-
mospheric General Circulation Models”, Proceeding of Supercomputing, Denver, Nov. 2001.

[9] D. J. Marvripilis, “Parallel Performance Investigations of an Unstructured Mesh Navier-
Stokes Solver”, Technical Report NASA/CR-2000-210088, ICASE No0.2000-13, ICASE,

Hampton, Virginia, 2000.
[10] MPI 1.1 Standard, http://www-unix.mcs.anl.gov/mpi/mpich.
[11
[12
[
(

]
] MPI-2: Extensions to the MPI Interface, http://www-unix.mcs.anl.gov/mpi/mpich.
] OMPItrace User’s Guide, https://www cepba.es.paraver/manuals.htm

13] OpenMP Fortran Application Program Interface, http://www.openmp.org/.

14] Paraver, http://www.cepba.upc.es/tools.paraver/.

[15] H. Shan, J. Pal Singh, “A comparison of MPI, SHMEM, and Cache-Coherent Shared Address
Space Programming Models on a Tightly-Coupled Multiprocessor”, International Journal of
Parallel Programming, Vol. 29, No. 3,2001.

[16] A. Serra, N. Navarro, and T. Corts, “DITools: Application-level support for Dynamic Exten-
sion and Flexible Composition”, Proceedings of the USENIX Annual Technical Conference,

June 2000.

[17] H. Shan, J. Pal Singh, “Comparison of Three Programming Models for Adaptive Applications
on the Origin 2000, Journal of Parallel and Distributed Computing 62, 241-266, 2002.

[18]J. Taft, “Achieving 60 GFLOP/s on the production CFD code OVERFLOW-MLP,” Parallel
Computing, 27 (2001) 521.

[19]J. Taft, “Performance of the OVERFLOW-MLP Code on the NASA Ames 512 CPU Origin
System”, NASA HPCCP/CAS Workshop, NASA Ames Research Center, February 2000.

[20] TAU: Tuning and Analysis Utilities, http://www.cs.uoregon.edu/research/paracomp/tau/.

[21] VAMPIR User’s Guide, Pallas GmbH, http://www pallas.de

16



